Abstract

A process of hydrothermal ageing of vanadia gels yields 10–20 nm thick and 90–100 nm wide nanobelts exceeding 10 microns in length. The diminished thickness and networking of anisotropic nanobelts lead to lithium intercalation capacities exceeding 450–500 mA h g−1 at a C/25 rate. The observed morphology features depend essentially on preparation conditions and allow to assume that this particular route results in a suitable morphology of nanobelts via chemical bond rearrangement in the course of olation and oxolation in the aged bulk gel. “Unzipping” of the layered structure of the precursor gel into single-crystalline nanobelts, and optimization of post-hydrothermal processing resulted in nanomaterials with enhanced electrochemical characteristics, making vanadia gels a precursor of choice for simple preparation of new battery nanomaterials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.