Abstract

We report on the observed characteristics of the first-order phase transition of F-actin from the isotropic state to the nematic liquid-crystalline state. Solutions of short average filament length F-actin at appropriate concentrations phase separate to form tactoidal droplets. These tactoids are the result of the minimization of their free energy and show a bipolar director field connecting two opposite poles. The tactoids are shown to form through two distinct mechanisms: nucleation and growth and spinodal decomposition. Both mechanisms produce tactoids with final domain sizes that are of the same order of magnitude. Additionally, analysis of the system shows several features of metastability. The solution can exist in a variety of steady states near equilibrium and can be easily perturbed, settling in one prescribed by the path followed in phase space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.