Abstract

In this paper we prove some integral estimates on the minimal growth of the positive part u+\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u_+$$\\end{document} of subsolutions of quasilinear equations divA(x,u,∇u)=V|u|p-2u\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} \ extrm{div}A(x,u,\ abla u) = V|u|^{p-2}u \\end{aligned}$$\\end{document}on complete Riemannian manifolds M, in the non-trivial case u+≢0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$u_+\ ot \\equiv 0$$\\end{document}. Here A satisfies the structural assumption |A(x,u,∇u)|p/(p-1)≤k⟨A(x,u,∇u),∇u⟩\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|A(x,u,\ abla u)|^{p/(p-1)} \\le k \\langle A(x,u,\ abla u),\ abla u\\rangle $$\\end{document} for some constant k>0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$k>0$$\\end{document} and for p>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$p>1$$\\end{document} the same exponent appearing on the RHS of the equation, and V is a continuous positive function, possibly decaying at a controlled rate at infinity. We underline that the equation may be degenerate and that our arguments do not require any geometric assumption on M beyond completeness of the metric. From these results we also deduce a Liouville-type theorem for sufficiently slowly growing solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.