Abstract

We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data [Formula: see text], [Formula: see text], we construct a divergence-free advecting velocity field [Formula: see text] (depending on [Formula: see text]) for which the unique weak solution to the transport equation does not belong to [Formula: see text] for any positive time. The velocity field [Formula: see text] is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space [Formula: see text] that does not embed into the Lipschitz class. The velocity field [Formula: see text] is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in Ann. PDE, 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.