Abstract

Sn-based thin films as new buffer layer for Cd-free Cu(In,Ga)Se2 (CIGS) solar cells were developed. The Sn(O,S)2 films were formed on CIGS substrates by chemical bath deposition from an alkaline ammonia solution by reacting tin(IV) chloride with thiourea. Optimization of the growth process allowed the smooth and conformal coverage of the films on the CIGS substrates with a thickness of 20 nm that was a self-limited thickness in the chemical bath deposition process. XPS analysis revealed that the as-deposited films contained Sn–O, Sn–OH, and Sn–S bondings and the ratio of Sn–S bonding to Sn–O bonding was 0.3. The CIGS solar cell fabricated with a 20-nm thick Sn(O,S)2 buffer layer had the best efficiency of 11.5% without AR coating. The open circuit voltage, short circuit current, and fill factor were 0.55 V, 34.4 mA/cm2, and FF = 0.61, respectively. The open circuit voltage and fill factor were low compared to the conventional CIGS solar cell with a 50-nm thick CdS buffer due to too thin Sn(O,S)2 buffer layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.