Abstract

In this work methane was decomposed to hydrogen and carbon to determine its kinetic behavior during reaction over a Co–Mo–MgO supported catalyst using the CVD (Chemical Vapor Deposition) technique. Decomposition of methane molecules was performed in a continuous fixed bed reactor to obtain data to simulate methane decomposition in a gas phase heterogeneous media. The products and reactants of reaction were analyzed by molecular sieve column followed by GC-analysis of the fractions to determine the amount of product converted or reactant consumed. The synthesis of single-walled carbon nanotubes was performed at atmospheric pressure, different temperatures and reactant concentrations. The experimental data analyzed to suggest the formula for calculation of the initial specific reaction rate of the carbon nanotubes synthesis, were fitted by several mathematical models derived from different mechanisms based on Longmuir-hinshelwood expression. The suggested mechanism according to dissociation adsorption of methane seems to explain the catalytic performance in the range of operating conditions studied. The apparent activation energy for the growth of SWNTs was estimated according to Arrhenius equation. The as grown SWNTs products were characterized by SEM, TEM and Raman spectroscopy after purification. The catalyst deactivation was found to be dependent on the time, reaction temperature and partial pressure of methane and indicated that the reaction of deactivation can be modeled by a simple apparent second order of reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.