Abstract

Ordered arrays of semiconductor quantum dots may provide new electronic, optical, or thermoelectric functionalities. In this work, we create ordered two-dimensional arrays of Si-Ge quantum dots by heteroepitaxial growth on Si (001) with pre-patterned pits. Instead of growing the dots directly at elevated temperatures, we first grow conformal alloy layers and then use post-growth annealing to promote directed self-assembly. Annealing provides monodisperse size distributions with excellent control over the quantum dot (QD) mean size and shape. Similar to QD formation during growth, intermixing with substrate Si occurs, despite the conformal layer, due to the presence of the pattern topography itself.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.