Abstract

This paper examines the growth of SiC nanowires on a wooden template surface through the reaction of wooden template/silicon composites in static argon atmosphere, using molten salt media. The effects of temperature and salt/Si ratio on the growth of wooden template were investigated. Morphology and structure of the biomorphic SiC/C ceramics were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The pore size distribution within the porous SiC/C ceramics was investigated using automatic mercury porosimetry. The results show that the biomorphic cellular morphology of wooden template was remained in the porous SiC ceramic with high precision that consists of β-SiC with traces of α-SiC. SiC in the wooden template exists in the cellular pores in the form of nanowires. The SiC nanowires were formed at about 1250°C by molten salt reaction between Si and C during the wooden-to-ceramic conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call