Abstract

The growth of SiGe strained-layer superlattices (SLS) has been received considerable attention due to the electronic and optoelectronic properties of these layers. In addition, these structures offer tantalizing possibilities for "band gap engineering" through the use of strain and chemically ordered alloys. The remaining barriers to grow the SiGe SLS structures with high quality result from the generation of large densities of defects, such as dislocations, twins, stacking faults, etc., at the heterointerfaces arising from the misfit strain relaxation. Other problems associated with the growth of the SiGe SLS structures are segregation and low incorporation of the dopants and inter-diffusion of Si and Ge. In the present study, the inter-mixing of Si and Ge and the generation of the defects in Si epilayers grown on Ge(001)2×1 at 550 °C by gas-source molecular beam epitaxy (MBE) from Si2H6 were studied using transmission electron microscopy (TEM), in-situ reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM) and electron energy-loss spectroscopy (EELS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call