Abstract

Using scanning reflection electron microscopy and a high-temperature scanning tunneling microscopy (STM), we study the growth processes of Si and Ge nanostructures on Si substrates covered with ultrathin SiO/sub 2/ films. Si windows are formed in the ultrathin SiO/sub 2/ films by irradiating focused electron beams used for SREM or field emission electron beams from STM tips before or during heating samples. Ge nanoislands are grown only at the Si window positions by depositing Ge on the samples and by subsequent annealing of them. Moreover, Ge nanoislands about 7 nm in size and ultrahigh density (>10/sup 12//cm/sup 2/) are grown on the ultrathin SiO/sub 2/ films. These nanoislands can be manipulated by STM when they are separated from Si substrates by the ultrathin SiO/sub 2/ films. Si, Ge, Ge/Si and Si/Ge/Si nanoislands can also be grown on the Si windows by selective growth using Si/sub 2/H/sub 6/ and GeH/sub 4/ gases. These nanoislands are found to be stable on the Si windows during high-temperature annealing. These results indicate that ultrathin SiO/sub 2/ technology is useful for growing Si and Ge nanostructures on given areas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.