Abstract

In this paper, we have developed self-assembled nanoscale assemblies that were prepared by conjugating furan-2-carboxylic acid-3-aminopropyl amide with the short peptide sequence Gly-His (abbreviated Gly-His-FCAP). To mimic the extracellular matrix of mammalian fibroblasts and keratinocytes, the assemblies were then conjugated with Type I collagen. We then integrated the collagen bound Gly-His-FCAP assemblies with a short peptide sequence derived from salamander skin into the nanoscale assemblies for the first time to impart regenerative and wound healing properties to the composites. The antioxidant, antimicrobial and biodegradable properties were examined and results indicate that the nanocomposites displayed antioxidant properties as displayed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The biodegradability was found to be gradual. The nanocomposites were also found to inhibit the growth of the fungus Rhizopus sporangia over an 18[Formula: see text]h growth period. As proof of concept, to demonstrate the development of three-dimensional (3D) engineered skin in vitro, 3D printed PLA scaffolds of 2.5[Formula: see text]mm thickness were submerged in media containing nanocomposites and co-cultures of dermal fibroblasts with epidermal keratinocytes mimicking three dimensional skin substitute was examined. Our results indicated that the nanocomposites adhered to and supported cell proliferation and mimicked the components of skin and may have potential applications in skin tissue regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call