Abstract

Growth mechanism of ScN on Sc2O3 for integration of Ga-polar GaN on Si(111) is investigated by in-situ X-ray photoemission spectroscopy, ex-situ time-of-flight secondary ion mass spectrometry, atomic force microscopy, and ab-initio density functional theory (DFT) calculations. The ScN films are grown by molecular beam epitaxy from e-beam evaporated Sc and N plasma. The films grow in a layer-by-layer (Frank–van der Merwe, FM) fashion. Diffusion of nitrogen into Sc2O3 and segregation of oxygen onto ScN are observed. The segregated O atoms are gradually removed from the surface by N atoms from the plasma. Experiment and theory show that nitrogen cannot be efficiently incorporated into Sc2O3 by exposing it to N plasma alone, and calculations indicate that anion intermixing between ScN and Sc2O3 should be weak. On the basis of ab-initio data, the in-diffusion of N into Sc2O3 is attributed mostly to the effect of interaction between ScN ad-dimers on the Sc2O3 surface in the initial stage of growth. The segregation of O to the ScN surface is understood as driven by the tendency to compensate build-up of the electric field in the polar ScN film. This segregation is computed to be energetically favorable (by 0.4 eV per O atom) already for a monolayer of ScN; the energy gain increases to 1.0 eV and 1.6 eV per O atom for two and three ScN layers, respectively. Finally, it is verified by DFT that the ScN deposition method in which Sc metallic film is deposited first and then nitridized would lead to strong incorporation of O into the grown film, accompanied by strong reduction of the Sc2O3 substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.