Abstract

Particular attention has been given to axonal outgrowth of neurons to understand how topographical surface cues influence attachment and subsequent directional migration and growth. In present study, the silk fibroin (SF) scaffold with uniaxial channels was prepared by directional freeze-drying processes. The average pore diameter, the porosity, and pore density of the scaffold are 120 µm, 88 %, and 203 mm−2, respectively. Further, hippocampal neurons were seeded onto the scaffold and the hippocampal neurons morphology was investigated. Cell-cell networks and cell-matrix interactions had been established by newly formed axons and the diversity of neurons was much higher after culturing 7 days. The neurons expressed β-III-tubulin and nerve filament, while glial fibrillary acidic protein immunofluorescence was barely above background. These results indicated that the SF scaffolds with uniaxial multichannels could be guided axons of neurons spread along the channels. SF scaffolds with oriented pores have a potential for nerve tissue regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.