Abstract

Porous anodic films have been developed on niobium at constant formation voltages between 5 and 50 V in glycerol electrolyte containing 0.8 mol dm-3 dibasic potassium phosphate at 433 K. Except at the formation voltage of 5 V, at which the current density is approximately constant during anodizing, the current shows the minimum and then maximum. After the current maximum, the current density decreases gradually, which follows the Cottrell equation. Thus, diffusion of some species in the pores should control the growth rate of the anodic films. The porous films developed are practically Nb2O5 with a small amount of carbon contamination. Incorporation of phosphorus species, which often occurs in aqueous electrolytes, is negligible at all the formation voltages in the present electrolyte. Based on the results obtained, the growth process of the porous anodic films on niobium in this hot organic electrolyte is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.