Abstract

AMC (Aluminum Matrix Composite) as a main material for automotive and aircraft applications has the keyadvantage that islighter thanaluminumalloys. So, it can be ascertained that fuel comsumption forthoseapplicationswill be reduced. However, AMC materials are generally suceptible to galvanic corrosion due to galvanic reaction between aluminum matrix and reinforcement, and the formation of microstructure at matrix/reinforcement interface as well. Anodizing is the most effective surface modification method in order to protect AMCs surfaces. This process produces porous anodic coating which has the characteristics of high corrosion resistance and hardness layer. However, the presence of reinforcement particles in AMC hinders the initiation and growth of the protective oxide layer by forming cavities and micro crack. Therefore cerium sealing has been done to remedy the poor anodic film in order to further enhance the corrosion resistance in aggressive circumstances. The material studied in this research was AMC Al7xxx/SiC. Anodizing process were conducted in H2SO4 solution at current densities 15, 20, and 25 mA/cm2 at 0°C for 30 minutes. Subsequently, continuedwithelectro lesssealinginCeCl3.6H2O+H2O2 solutionat room temperature atpH9 for 30 minutes. The morphologies of anodic coating and sealing layer were examined by means of FE-SEM, the corrosion resistance of composites was estimated in a 3.5 wt.% NaCl solution by potentiodynamic polarization test. Coating process conducted by anodizing and cerium sealing in various of anodizing current densities at 0°C results in protective layers which lead to the decreasing of corrosion rate and current density up to four orders magnifications than that of bare and anodizedAl7xxx/SiCcomposite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.