Abstract
Inorganic polyphosphate (polyP) plays a significant role in increasing bacterial cell resistance to unfavorable environmental conditions and in regulating different biochemical processes. Using transmission electron microscopy of the polychlorinated biphenyl (PCB)-degrading bacterium Pseudomonas sp. strain B4 grown in defined medium with biphenyl as the sole carbon source, we observed large and abundant electron-dense granules at all stages of growth and following a shift from glucose to biphenyl or chlorobiphenyls. Using energy dispersive X-ray analysis and electron energy loss spectroscopy with an integrated energy-filtered transmission electron microscope, we demonstrated that these granules were mainly composed of phosphate. Using sensitive enzymatic methods to quantify cellular polyP, we confirmed that this polymer accumulates in PCB-degrading bacteria when they grow in the presence of biphenyl and chlorobiphenyls. Concomitant increases in the levels of the general stress protein GroEl and reactive oxygen species were also observed in chlorobiphenyl-grown cells, indicating that these bacteria adjust their physiology with a stress response when they are confronted with compounds that serve as carbon and energy sources and at the same time are chemical stressors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.