Abstract

Calcite crystals nucleate on the (01.2) face on a diverse range of organic substrates, including self-assembled monolayers, hydrogen-bonded ribbons, and polymer rafts. The (01.2) face of calcite is a polar surface. Therefore macroscopic crystal growth can only occur if the dipole moment is quenched. We demonstrate that the dipole moment can be quenched for a given polar direction by adsorption onto an organic substrate with arbitrary charge density. The density of ions in the outer calcium plane must be modified, by introducing rows of vacancies, to fulfill the condition of zero net dipole moment. Interfacial energies are calculated for interfaces between the polar (01.2) and (00.1) faces of calcite and stearic acid monolayers with a range of densities. It was found that, contrary to the experimental evidence, the (00.1) face has lower interfacial energy than the (01.2) face with monolayers with equivalent densities. We give an explanation for this discrepancy based on kinetic models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call