Abstract

ABSTRACTThe main challenges involved in the growth of an epitaxial oxide film with a crystalline interface to silicon are reviewed: (1) structural matching of the oxide and semiconductor lattices; (2) thermodynamic energy stabilization at the semiconductor–oxide interface, and (3) kinetic control over oxygen motion throughout the deposition process. We report on how this approach can be used to grow epitaxial perovskites of high structural quality from the (Ba, Sr)(Zr,Ti)O3 family with crystalline interfaces on Si (100) by molecular-beam epitaxy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.