Abstract

Ordered graphene ribbons were grown on the surface of 4° off-axis 4H-SiC wafers by sublimation epitaxy, and characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman spectroscopy (μ-Raman). SEM showed that there were gray and dark ribbons on the substrate surface, and AFM further revealed that these ordered graphene ribbons had clear stepped morphologies due to surface step-bunching. It was shown by μ-Raman that the numbers of graphene layers of these two types of regions were different. The gray region was composed of mono- or bilayer ordered graphene ribbon, while the dark region was of tri- or few-layer ribbon. Meanwhile, ribbons were all homogeneous and had a width up to 40 μm and a length up to 1000 μm, without micro defects such as grain boundaries, ridges, or mono- and few-layer graphene mixtures. The results of this study are useful for optimized growth of high-quality graphene film on silicon carbide crystal.

Highlights

  • Due to its unique properties, such as the unusual half-integer quantum Hall effect [1,2] and mass-less Dirac fermion behavior [3,4], graphene has many potential applications in the fields of novel physics, chemistry, optics, and mechanics [5,6], and as realistic technology transfer in the fields of membrane technology [7], energy [8], photodetection [9], and plasmonics [10]

  • Intrinsic monolayer graphene is a semimetal without a bandgap, we can open a specific bandgap by patterning graphene into nano-ribbons or coupling graphene with certain substrates [21,22]; bilayer graphene can be operated to have a high on/off ratio, and a bandgap up to hundreds of millielectronvolts controlled by an electronic field, which paves the way for its applications in high performance electronics [23]

  • We investigated the process of growth of high-quality graphene ribbons

Read more

Summary

Introduction

Due to its unique properties, such as the unusual half-integer quantum Hall effect [1,2] and mass-less Dirac fermion behavior [3,4], graphene has many potential applications in the fields of novel physics, chemistry, optics, and mechanics [5,6], and as realistic technology transfer in the fields of membrane technology [7], energy [8], photodetection [9], and plasmonics [10]. Growth of large scale graphene films on single crystal silicon carbide wafers such as. Large scale semi-insulating 4H-SiC wafers (SI-SiC) are commercially available and can be used for graphene preparation. This makes graphene devices able to be fabricated directly on SI-SiC wafers without a transfer of graphene to the foreign substrate, which overcomes the drawback of graphene grown on metal foil [36,37]. There are nano-steps on the surface of a mis-cut 4H-SiC wafer (typically 4◦ off-axis), which act as templates for the preparation of exquisite graphene, such as nano-ribbons [38]. Our results shed light on the growth of high-quality graphene film on silicon carbide crystal

Materials
Apparatus
Methods
Effect of Heat Treatment
Role of Gas Mixture
Graphene Characterization
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.