Abstract

High-temperature methane infiltration of thin, free-standing films of acid-treated single-walled carbon nanotubes (SWCNT) has been studied by means of scanning electron microscopy, transmission electron microscopy and Raman spectroscopy. In the early stages of infiltration, carbon nuclei form predominantly at SWCNT bundle intersections. Further growth proceeds via the formation of graphite nanosheets – without further influence of the nanotube support. Both sheet edges and their structural imperfections act as reaction centers for subsequent deposition, likely giving rise to autocatalytic deposition kinetics. In contrast, infiltration with a H 2:CH 4 (24:1) mixture leads to the reductive activation of residual Ni/Co impurities embedded in the precursor SWCNT-felt. This is associated with a different predominant carbon deposition mode in which multiwalled carbon nanotubes grow out from the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.