Abstract
Although the ability of hormones and growth factors to stimulate DNA synthesis in rat hepatocytes has been investigated extensively, no such study of human hepatocytes has been reported. Here we describe a series of experiments to identify those factors that regulate human hepatocyte DNA synthesis in vitro and which therefore may play a role in the control of human liver regeneration. Human hepatocytes were isolated from normal liver tissue obtained after graft reduction for transplantation into pediatric recipients. Cells were maintained in culture for up to 5 days, and DNA synthesis was determined. Hydroxyurea reduced [3H]thymidine incorporation into DNA by 95%, indicating replicative DNA synthesis. As previously found with rat hepatocytes, epidermal growth factor and transforming growth factor-alpha stimulated DNA synthesis at low nanomolar concentrations; transforming growth factor-alpha was slightly more potent. Although the overall rate of thymidine incorporation was lower than that for rodent cells, human hepatocytes were sensitive to lower concentrations of these growth factors, and the degree of stimulation was similar. Conversely, transforming growth factor-beta inhibited DNA synthesis at low picomolar levels. By contrast (unlike rat hepatocytes), arginine-vasopressin failed to initiate or potentiate DNA synthesis in human cells. These data indicate that normal human hepatocytes can respond to low concentrations of growth promoters or inhibitors, previously shown to have activity on rat hepatocytes. These factors may then play a role in control of human liver growth. However, important species differences are apparent, highlighting the limitations of extrapolating from animal studies to humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.