Abstract

The paper concerns the Gelfand-Kirillov dimension and the generating series of nonsymmetric operads. An analogue of Bergman's gap theorem is proved, namely, no finitely generated locally finite nonsymmetric operad has Gelfand-Kirillov dimension strictly between $1$ and $2$. For every $r\in \{0\}\cup \{1\}\cup [2,\infty)$ or $r=\infty$, we construct a single-element generated nonsymmetric operad with Gelfand-Kirillov dimension $r$. We also provide counterexamples to two expectations of Khoroshkin and Piontkovski about the generating series of operads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.