Abstract

Yttrium aluminum garnet (YAG) and neodymium-doped yttrium aluminum garnet (Nd-YAG) nano-crystalline powders were successfully grown using cost effective sol spray process without the addition of any chelating agent or organic templates. Thermal decomposition behavior was studied by thermogravimetry (TG) and differential thermal analysis (DTA). Results revealed that crystallization of YAG started around 920 °C. The shrinkage/expansion behavior of synthesized powder was examined by dilatometer and revealing that sintering kinetics of these materials can be related to the evaporation of binder and formation of crystalline phases. Nano-crystallinity and garnet structure of YAG and Nd-YAG specimens were analyzed by Raman, fourier transform infra red (FTIR), and X-ray diffraction (XRD) techniques. XRD patterns were indexed using Rietveld refinement method. Smaller lattice parameter and a small change in atomic position of oxygen were found in Nd-YAG when compared with YAG structure. Scanning electron microscope (SEM) results indicated that particle size of Nd-YAG was <150 nm. The morphology of Nd-YAG nanosized powder was rounded in shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.