Abstract

The development of Na–O2 batteries requires understanding the formation of reaction products, as different groups reported compounds such as sodium peroxide, sodium superoxide, and hydrated sodium peroxide as the main discharge products. In this study, we used in operando synchrotron radiation powder X-ray diffraction (SR-PXD) to (i) quantitatively track the formation of NaO2 in Na–O2 cells and (ii) measure how the growth of crystalline NaO2 is influenced by the choice of electrolyte salt. The results reveal that the discharge could be divided into two time regions and that the formation of NaO2 during the major part of the discharge reaction is highly efficient. The findings indicate that the cell with NaOTf salt exhibited higher capacity than the cell with NaPF6 salt, whereas the average domain size of NaO2 particles decreases during the discharge. This fundamental insight brings new information on the working mechanism of Na–O2 batteries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call