Abstract

The growth of nanocrystalline MoO3 islands on Au(111) using physical vapor deposition of Mo has been studied by scanning tunneling microscopy and low energy electron diffraction. The growth conditions affect the shape and distribution of the MoO3 nanostructures, providing a means of preparing materials with different percentages of edge sites that may have different chemical and physical properties than atoms in the interior of the nanostructures. MoO3 islands were prepared by physical vapor deposition of Mo and subsequent oxidation by NO2 exposure at temperatures between 450 K and 600 K. They exhibit a crystalline structure with a c(4 x 2) periodicity relative to unreconstructed Au(111). While the atomic-scale structure is identical to that of MoO3 islands prepared by chemical vapor deposition, we demonstrate that the distribution of MoO3 islands on the Au(111) surface reflects the distribution of Mo clusters prior to oxidation although the growth of MoO3 involves long-range mass transport via volatile MoO3 precursor species. The island morphology is kinetically controlled at 450 K, whereas an equilibrium shape is approached at higher preparation temperatures or after prolonged annealing at the elevated temperature. Mo deposition at or above 525 K leads to the formation of a Mo-Au surface alloy as indicated by the observation of embedded MoO3 islands after oxidation by NO2. Au vacancy islands, formed when Mo and Au dealloy to produce vacancies, are observed for these growth conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call