Abstract

Both Sjögren's syndrome and therapeutic irradiation for head and neck cancer lead to irreversible damage of the parenchyma of the salivary glands. This report describes an attempt to grow miniature pig (minipig) parotid gland cells on artificial films and tubular scaffolds with the ultimate intention of developing bio-engineered replacement tissue. Minipig parotid cells were isolated and cultured. The growth and structural and physiological features of the cells which were cultured on films and porous tubular scaffolds made from poly(ethylene glycol)-terephthalate (PEGT)/poly(butylene terephthalate) (PBT) were examined. By 9 days, the parotid cells on the films and the tubular scaffolds formed continuous monolayers. The secretory granules and nuclei of the cultured acinar cells remained polarised. Desmosomes, gap junctions and tight-like junctions were still present between the apical regions of adjacent cells. Amylase activity decreased during the culture period but was still evident in the medium after 10 days of culture. In conclusion, minipig parotid cells are well-maintained in vitro on both a flat surface and a three-dimensional (3D) scaffold. The addition of a Matrigel coating to the surface of synthetic materials aids cell growth and maintenance of a morphology that more closely resembles normal epithelium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.