Abstract
We construct random locally compact real trees called Levy trees that are the genealogical trees associated with continuous-state branching processes. More precisely, we define a growing family of discrete Galton–Watson trees with i.i.d. exponential branch lengths that is consistent under Bernoulli percolation on leaves; we define the Levy tree as the limit of this growing family with respect to the Gromov–Hausdorff topology on metric spaces. This elementary approach notably includes supercritical trees and does not make use of the height process introduced by Le Gall and Le Jan to code the genealogy of (sub)critical continuous-state branching processes. We construct the mass measure of Levy trees and we give a decomposition along the ancestral subtree of a Poisson sampling directed by the mass measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.