Abstract

Li-containing materials can be applied as neutron scintillators, and LiBaF3 can discriminate neutron and gamma rays. Moreover, LIF/LiBaF3 can have higher cross section of thermal-neutron capture compared with LiBaF3. In this study, LiF (82.5 mol%) and (Ba1−x RE x )F2 (17.5 mol%, RE = Ce and Eu, x = 0.002) eutectic crystals, LiF/RE:LiBaF3, were grown by the micropulling down method with different pulling rates (growth rate) in order to observe the eutectic structure. Lamellar microstructure was formed for each pulling rate. LiF/Ce:LiBaF3 excited by 5.5-MeV alpha rays had a broad peak at ~350 nm corresponding to 5d–4f transition of Ce3+. On the other hand, LiF/Eu:LiBaF3 had two scintillation processes; a sharp emission was originated from 6P7/2 → 8S7/2 transitions in the 4f electronic configuration of Eu2+ at 360 nm, and a broad one was attributed to Eu2+ trapped exciton recombination at 400–450 nm. Since scintillation light was observed for these materials, these scintillators are sensitive to neutrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call