Abstract

Abstract Layer-bound normal faults commonly form polygonal faults with fine-grained sediments early in their burial history. When subject to anisotropic stress conditions, these faults will be preferentially oriented. In this study we investigate how faults grow, evolve and interact within regional-scale layer-bound fault systems characterized by parallel faults. The intention is to understand the geometry and growth of faults by applying qualitative and quantitative fault analysis techniques to a 3D seismic reflection dataset from the Levant Basin, an area containing a unique layer-bound normal fault array. This analysis indicates that the faults were affected by mechanical stratigraphy, causing preferential nucleation sites of fault segments, which were later linked. Our interpretation suggests that growth of layer-bound faults at a basin scale generally follows the isolated model, accumulating length proportional to displacement and, when subject to an anisotropic regional stress field, resembling to a great extent classical tectonic normal faults.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.