Abstract

The late stage of terrestrial planets' growth determined many of their fundamental properties, including their thermal properties and petrology, their impact records, and possibly the existence of the Moon. A critical result of late-stage models, which bears on observable properties, is the size of the largest planetesimals that grew near, and later impacted,those that became full-size planets. There has been considerable misinterpretation of previous models regarding the relation between the size of planetesimals and their relative velocities. Furthermore, some models neglect the possible decrease in relative velocity as control is transferred from the largest to the second-largest body in an accreation zone. Evidence that Venus helped stir Earth-zone planetismals is not copelling. When models are evaluated, the results are found to depend strongly on uncertain initial conditions. The size of the second-largest planetesimal in the Earth's zone might range from ∼300 to ∼2500 km, with corresponding accretion times of ∼7 × 10 6 and ∼10 8 years, respectively. Both extremes are generated from plausible initial conditions and both seem consistent with observed planetary properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.