Abstract

Indium nitride (InN) epilayers have been successfully grown on Si (111) substrates with low-temperature (450°C) grown InN and high-temperature (1050°C) grown AlN (InN∕AlN) double-buffer layers by atmospheric-pressure metal-organic chemical vapor deposition (AP-MOCVD). X-ray diffraction characterizations indicated that highly (0001)-oriented hexagonal InN was grown on Si (111) substrate. Photoluminescence (PL) analyses performed at room temperature showed a strong emission at 0.72eV with a full width at half maximum of 121meV. Excitation intensity dependent measurements demonstrated the PL mechanism to be the band-to-band transition. Time-resolved PL could be fitted by a single exponential exhibiting an ordered film and a recombination lifetime of around 0.85ns. In particular, transmission electron microscopy characterizations indicated that the use of AlN first buffer is very important to achieve a structurally uniform (0001)-oriented InN epilayer on Si (111) by AP-MOCVD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call