Abstract

InN and In-rich InGaN layers have been grown on GaN templates using the pulsed metalorganic chemical vapor deposition (MOCVD) technique and compared with analogous layers grown by conventional MOCVD. Structural investigations were performed using x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Surface morphology was studied using atomic force microscopy. Electrical and optical properties were studied using Hall measurements and photoluminescence (PL) spectroscopy. All layers were free of metal droplets. InN grown using pulsed MOCVD showed fairly low background electron concentration (n e = 8 × 1018 cm−3 to 9 × 1018 cm−3) and high electron mobility (μ e = 644 cm2 V−1 s−1). Structural studies revealed increase of size (from 100 nm to 500 nm) and decrease of density of InN islands at higher growth temperatures. For In-rich InGaN layers (In content 68% and 80%) the density of islands was similar to that in InN, while the diameter varied from 50 nm to 150 nm. Inhomogeneities of In and Ga distribution in the layers resulting in broadened XRD lines and PL bands are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call