Abstract

Three characteristic silicon/carbon nanostructures, i.e., graphitic polyhedral (GP) particles, silicon carbide (SiC) platelets, and carbon nanotubes (CNTs) filled with SiC nanowires, were synthesized by the laser ablation of Si‐C targets in the presence of high‐pressure Ar gas up to 0.9 MPa. The growth of nanostructures was controlled merely by adjusting the Si content in graphite and the ambient Ar gas pressure. Deposits containing GP particles were purified by heat treatment at 550° C in a pure oxygen atmosphere for 1 h. CNTs filled with SiC nanowires were grown without a catalyst. Unlike previous studies of CNTs filled with metals or compounds, all the CNTs checked by transmission electron microscopy contained SiC nanowires and no unfilled CNTs were produced. We discuss the growth mechanisms of the three nanostructures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.