Abstract

The growth process of graphene structure on 6H-SiC(0001) surface has been studied using the classical molecular dynamics (MD) simulation and the simulated annealing technique. We show that carbon atoms of the 6H-SiC(0001) subsurface after sublimation of Si atoms can be self-organized to form local monolayer graphene structures. This process is similar to the formation of graphene on the 6H-SiC(0001) surface, depending strongly on annealing temperature and coverage of carbon atoms on the SiC(0001)surface. The local graphene structures can be formed on 6H-SiC(0001)as the annealing temperature is around 1400 K. This transformation temperature is in good agreement with experimental observations (1080 ℃), but is lower than that of growing graphene on SiC(0001) surface (T≈1450 K). In addition, not only single layer but also bilayer graphene structure can be formed, associated with the increase of the coverage of carbon atoms on SiC(0001)surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.