Abstract

GeSi nanoislands grown on nanotip pre-patterned Si substrates at various temperatures are investigated. Nanoislands with a high density and narrow size distribution can be obtained within an intermediate temperature range, and the Ge atom diffusion length is comparable to half of the average distance of the Si nanotips. The Ge concentration distributions at the center and edge of the GeSi nanoislands are measured by scanning transmission electron microscopy. The results reveal that there is a Si core at the center of the GeSi nanoisland, but the Ge concentration presents a layered distribution above the Si nanotips. The radial component of the stress field in Ge layer near the Ge/Si interface on the planar, and the nanotip regions is qualitatively discussed. The difference of the stress field reveals that the experimentally observed concentration profile can be ascribed to the stress-induced interdiffusion self-limiting effect of the Si nanotips.

Highlights

  • The self-organized growth of semiconductor nanodots has attracted considerable interest

  • The results reveal that there is a Si core at the center of the GeSi nanoisland, but the Ge concentration presents a layered distribution above the Si nanotips

  • The unique features of the GeSi nanoislands were investigated as a function of the growth temperature

Read more

Summary

Introduction

The self-organized growth of semiconductor nanodots has attracted considerable interest. Fundamental investigations on their structural, electronic, and optical properties, as well as on their potential use in electronic and optoelectronic devices, have been extensively conducted [1,2,3,4,5]. Among the broad range of semiconductor material systems, group IV semiconductor (Si and Ge) nano/heterostructures are distinctive in that they offer material compatibility and facilitate integration with well-established Si-based technology [6,7,8,9,10,11,12,13]. Ge can be integrated with conventional devices.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.