Abstract

ABSTRACTRemote Plasma-enhanced Chemical Vapor Deposition (RPCVD) has been successfully used to grow GexSi1−x/Si (x = 0.1 – 1.0) heteroepitaxial structures at low temperatures (∼450°C). This technique utilizes a noble gas (Ar or He) r-f plasma to decompose reactant gases (SiH4 and GeH4) and drive the chemical deposition reactions in the gas phase as well as on the substrate surface. Growth of pure Ge on Si is of great interest because it provides a promising technique for making suitable low-cost substrates for thin-film Ge photodetectors as well as GaAs devices on Si substrates. The realization of these applications depends on the ability to grow high-quality epitaxial Ge layers on Si substrates. Since GaAs is lattice matched to Ge, growth of Ge layers on Si substrates with good crystalline perfection would permit the integration of GaAs and Si devices. Islanding was observed after the growth of pure Ge films directly on Si(100) for a wide range of plasma powers (7W ∼ 16W) in RPCVD. Cross-sectional TEM analysis showed that the islands have complicated facet structures, including {311} planes. Graded Gex Si1−x buffer layers with different Ge profiles have been used prior to the growth of Ge. It was found that uniform Ge films can be obtained using a buffer with an abrupt Ge profile, and the dislocation density in the Ge film decreases with increasing distance from the substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call