Abstract

GaN films have been grown on quartz and (011̄2) sapphire substrates using combined ultraviolet excimer laser and microwave plasma enhanced metalorganic chemical vapour deposition (MOCVD) at a substrate temperature of 500°C. Film compositions were analysed by X-ray photoelectron spectroscopy (XPS) and less than 5% residual impurity, principally carbon and oxygen was found. Films grown on quartz were polycrystalline wurtzite with a preferential (0002) orientation, while (0002) and (21̄1̄0) orientations were both found on (011̄2) sapphire. Electron carrier concentration was found to be controllable between 10 17 and 10 14 cm −3 via control of ammonia plasma injection rate, whilst electron mobility also increased proportionally with the flow rate of the plasma. A room-temperature mobility of 95 cm 2 V −1 s −1 was obtained for films on (011̄2) sapphire, saturating at a plasma flow rate of 100 ml/min. The results are interpreted as showing a reduction of nitrogen vacancies by an increase in the reacting species liberated in the plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.