Abstract

InAsGaSb strained layer superlattices have been grown by atmospheric pressure MOVPE and the growth conditions optimised by observing, in real time, the in-situ UV absorption of the alkyls in the growth chamber. The Raman scattering of folded longitudinal acoustic phonons in the superlattices has been used as a probe of the periodicity of the superlattice. Atomic force microscopy has also been used to give information about the final surface morphology and RMS roughness of the superlattices. By combining all three techniques, optimum conditions have been found for the growth of short period InAsGaSb superlattices. These have been used to sandwich a long period superlattice designed for transport measurements. The use of the short period superlattices eliminated additional conducting layers at each end of the semimetallic superlattice and produced structures where the hole and electron densities are equal. Such structures exhibit a dramatic new quantum transport effect where the Hall resistance goes to zero at high pressures and low temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.