Abstract

The epitaxial quality of thin films crucially depends on their interaction with the substrate. Up to now, Ag-terminated Si(111) has been employed as the model substrate for the growth of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) on semiconductors. In this study, we will show that Bi termination results in PTCDA films of superior epitaxial quality. We have studied the growth of PTCDA on bismuth-passivated Si(111) in detail by means of spot profile analysis of low-energy electron diffraction (SPA-LEED), X-ray photoemission spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and scanning tunneling microscopy (STM). The XPS results reveal the presence of intact PTCDA molecules on the surface upon adsorption. NEXAFS data indicate the PTCDA molecules being oriented with their molecular plane parallel to the surface. STM shows a very smooth growth front of the PTCDA film, preserving the step structure of the substrate. High-resolution SPA-LEED data demonstrate the presence of a multidomain surface with a rich variety of PTCDA surface structures, which were identified to be most prominently herring-bone polytypes. However, in the monolayer range, quadratic brick-wall structures and a nearly square-like structure as well as a perylene-like structure have also been found. Despite the simultaneous presence of multiple domains, the individual domains show excellent lateral ordering, with larger domain sizes as compared to the case of Ag-terminated Si(111).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call