Abstract

The effect of high magnetic fields on interfacial reactive diffusion in liquid/solid (Al/Cu) couples was experimentally investigated at a temperature of 973 K. Regardless of any magnetic field, compound layers consisting of the δ, ξ 2, η 2 and θ phases were produced at the interface. The magnetic flux density, B , exerted a non-monotonic influence on the growth of the diffusion layers. Moreover, the mean thickness of the diffusion layers (parallel to B ) was found to be always greater than that of the diffusion layers (perpendicular to B ) under the applied magnetic fields. These phenomena should be attributed to the effects of two types of the Lorentz force under a uniform high magnetic field on diffusion behavior. In addition, the growth of intermetallic phases could be retarded by a magnetic field gradient due to the magnetic force in the axial direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.