Abstract

A Cu-rich CuInSe2 (CIS) thin film with an atomic ratio of Cu/In = 3.6 was characterized using high-resolution and analytical transmission electron microscopy (TEM). The film was deposited on a Mo coated soda-lime glass substrate by physical vapor deposition. Rutherford backscattering spectroscopy (RBS) and Auger electron spectroscopy (AES) showed that a secondary impurity phase such as Cu2Se segregated on the CIS surface. The three-dimensional crystallographic relationship between the Cu2Se and CIS was found to be (111)Cu2Se (111)CIS and [011]Cu2Se || [011]CIS where the Cu2Se and CIS had pseudocubic structures with a = 5.8 Å and a = 11.6 Å, respectively. CuPt type CIS could be observed near the interface between the Cu2Se and CIS. A growth model of CIS crystals under Cu and Se excess condition is proposed based on the results of TEM. The characteristics of the CIS growth model in Cu-rich CIS film are summarized as follows: (i) CIS crystals are produced from Cu2Se crystals by a “topotactic reaction,” and (ii) sphalerite and/or CuPt type CIS are produced first after the reaction, and (iii) the metastable sphalerite and/or CuPt type CIS is then transformed to the stable chalcopyrite CIS phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.