Abstract

In(2)Se(3) is an essential phase change material and CuInSe(2) is the fundamental basis of the copper-indium-gallium-diselenide (CIGS) solar energy material. In this paper, we demonstrate the feasibility to transform the phase change material to the solar energy material via the solid state reaction. The In(2)Se(3) nanobelts (NBs) were synthesized via the vapor-liquid-solid mechanism. The chemical composition and the optical properties were investigated by energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and reflectance and photoluminescence spectra. In the in situ observation of the solid state reaction with Cu to form the CuInSe(2) NBs with ultrahigh vacuum transmission electron microscopy, we observed the In(2)Se(3)/CuInSe(2) transformation at atomic scale in real time. The progression of the atomic layer at the interface provided the pertinent information on the kinetic mechanism. In(2)Se(3)/CuInSe(2) nano-heterostructures were also obtained in the present investigation. The approach to the CIGS nanosolar cell was also proposed. This study shall be beneficial in the development of high-performance nanowire solar cells and nanodevices with In(2)Se(3)/CuInSe(2) nano-heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.