Abstract

Single‐walled carbon nanotubes (SWCNT) were distributed on the surface of ordinary Portland cement (OPC) grains. The OPC/SWCNT composite was then hydrated at a 0.5 w/c ratio. The effects of the SWCNT on the early hydration process were studied using isothermal conduction calorimetry, high‐resolution scanning electron microscopy and thermogravimetric analysis. The observed behavior of the composite samples was compared with both OPC sonicated without SWCNT and previously published data on as‐delivered OPC. The SWCNT were found to accelerate the hydration reaction of the C3S in the OPC. The morphology of both the initial C3A and the C3S hydration products were found to be affected by the presence of the SWCNT. In particular, the nanotubes appeared to act as nucleating sites for the C3S hydration products, with the nanotubes becoming rapidly coated with C–S–H. The resulting structures remained on the surface of the cement grains while those in the sonicated and as‐delivered OPC samples grew out from the grain surfaces to form typical C–S–H clusters. Classical evidence of reinforcing behavior, in the form of fiber pullout of the SWCNT bundles, was observed by 24 h of hydration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.