Abstract

AbstractBoron carbide crystals ranging in size from 50 microns to several millimeters have been grown from a copper-boron carbide flux at temperatures from 1500°C to 1750°C. The crystal size increased with growth temperature although copper evaporation limited growth at the higher temperatures. Synchrotron X-ray Laue patterns were indexed according to (001) orientation boron carbide structure, indicating the bulk crystals were single crystalline with {001} growth facets. Raman spectrum of boron carbide indicates an improved crystal quality compared to the source powder, but peaks of crystals grown from 11B -enriched source shifted to the lower energy by 1-4 cm−1 from literature values, possibly due to the boron isotope dependency. Five fold symmetry defects and twin planes were common as observed by optical microscope and scanning electron microscope. Raindrop shape etch pits were formed after defect selective etching in molten potassium hydroxide at 600°C for 6 minutes. Typically, the etch pit density was on the order of 106/cm2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call