Abstract

Growth kinetics of intermetallic compound (IMC) layers formed between the Sn-3.5Ag-5Bi solder and the Cu and electroless Ni-P substrates were investigated at temperatures ranging from 70°C to 200°C for 0–60 days. With the solder joints between the Sn-Ag-Bi solder and Cu substrates, the IMC layer consisted of two phases: the Cu6Sn5 (η phase) adjacent to the solder and the Cu3Sn (e phase) adjacent to the Cu substrate. In the case of the electroless Ni-P substrate, the IMC formed at the interface was mainly Ni3Sn4, and a P-rich Ni (Ni3P) layer was also observed as a by-product of the Ni-Sn reaction, which was between the Ni3Sn4 IMC and the electroless Ni-P deposit layer. With all the intermetallic layers, time exponent (n) was approximately 0.5, suggesting a diffusion-controlled mechanism over the temperature range studied. The interface between electroless Ni-P and Ni3P was planar, and the time exponent for the Ni3P layer growth was also 0.5. The Ni3P layer thickness reached about 2.5 µm after 60 days of aging at 170°C. The activation energies for the growth of the total Cu-Sn compound layer (Cu6Sn5 + Cu3Sn) and the Ni3Sn4 IMC were 88.6 kJ/mol and 52.85 kJ/mol, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.