Abstract

AlGaN epilayers on GaN/sapphire were successfully grown under various growth conditions using a thermally pre-cracked ion-supplied metalorganic chemical vapor deposition. The Al composition in the solid was affected by the gas-phase parasitic reaction between NH 3 and trimethylaluminum (TMAl). As the operating pressure decreased, the Al composition in the solid increased over the ideal incorporation efficiency. This is due to a scavenging effect and a site-blocking effect. As the TMAl flow rate increased with fixed flow rates of NH 3 and trimethylgallium (TMGa), the Al concentration in the solid increased but started to saturate. As the TMGa flow rate decreased, the solid Al composition increased linearly, which means different parasitic reactions between TMGa:NH 3 and TMAl:NH 3. In addition, we found that the separating plate that was inserted to the reactor in front of the heated susceptor to separate ammonia gas flow from MO source input played an important role in the AlGaN growth. Particularly, the separating plate was more attractive under high operating pressure. When it was inserted, a white crystalline solid formed by the adduct (TMAl:NH 3) of parasitic reaction in the gas phase disappeared. It also increased the Al concentration in the solid. SEM images of AlGaN epilayer’s surface showed many small islands due to the lack of surface mobility of adatoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.