Abstract

AlGaN alloys with very high AlN mole fraction (∼90 %) were grown by plasma-assisted molecular beam epitaxy (PA-MBE) and their alloy properties were investigated by high-resolution X-ray diffraction (HR-XRD) measurements. Growth was carried out employing a series of group III/V ratios and for samples grown under a high group-III regime, phase-segregation in the alloy was evident from a characteristic splitting of the AlGaN (0002) peak in the HR-XRD pattern. With decreasing excess group-III conditions the separation of peak positions continuously reduced, till a single peak was observed. However, for samples where such splitting was absent, spontaneous superlattice peaks were seen at lower incident angles of the XRD patterns indicating the presence of long-range atomic ordering (LRAO). Thus, for AlGaN alloys with extremely high Al content, effects of phase-segregation, or of LRAO were observed, depending on the kinetics of growth. These results on phase-segregation effects are expected to promote the development of high-efficiency deep ultraviolet emitters for skin-safe germicidal action by mitigating the detrimental effect of dislocations and related non-radiative recombination centers through carrier localization processes at potential minima.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.