Abstract
The demonstration of an efficient nanostructure that provides acceptable photoelectrochemical water splitting properties using the sun visible radiation is an appealing issue. In this connection, a new ternary nanocomposite of Ag2S/MoS2/ZnO photoanode is subsequently fabricated via hydrothermal, solvothermal and SILAR methods. Different properties of the nanocomposite are characterized by XRD, SEM, EDX, XPS, UV–Vis-IR spectroscopy and electrochemical techniques. The post-grown annealed 8-Ag2S/MoS2/ZnO photoanode exhibits a good performance with a photocurrent density of 2 mA/cm2 at a bias potential 1.23 V vs. RHE. The photocurrent of the post-grown annealed 8-Ag2S/MoS2/ZnO photoanode is 71.42 times, 40 times and 2 times higher compares to the pure ZnO, post-grown annealed MoS2/ZnO, and post-grown annealed 8-Ag2S/ZnO photoanodes, respectively. The enhanced PEC performance may originate from the combination of different effects such as the expansion of light absorption and energy band alignment (type II heterostructures), [SO4] acted as a charge-transfer medium, and electrode-electrolyte interface kinetic reactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.