Abstract

We developed a basal area growth model for recovery of advance growth of Norway spruce trees after clear-cutting. Stem diameter growth at ground level and needle-mass characteristics were measured on permanent sample plots in Estonia. Both tree ring analysis (destructive sampling on one sample plot) and yearly repeated measurement data (two plots) were used to quantify advance growth. Basal area growth of small trees was estimated by multiple regression analysis. Previous-year basal area of the tree and basal area growth explained tree performance the next year. Tree needle-mass variables characterizing the acclimation status of the tree were included in the model as explanatory factors. Needle samples (one shoot from the upper third of each tree crown) were collected each year after the growth period from all sample trees. Needle masses of shoots from consecutive years were correlated and this variable was used as a predictor in the simulation model. Accelerating growth was observed in trees that exceeded the growth threshold in the year after release: the greater the needle mass per shoot, the greater the acceleration in growth. Competition among advance regeneration trees was included in the model: small trees under taller neighbors exhibited reduced growth. We found that trees released from a long period of heavy shade can survive, but the time needed for acclimation and resumption of competitive growth rates is considerably longer than for trees released from light shade. Such trees can be used for forest regeneration, but competition control (particularly reducing the proportion of fast-growing hardwoods) is required.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.