Abstract

Abstract. Sinkhole collapse is a major hazard causing substantial social and economic losses. However, the surface deformations and sinkhole evolution are rarely recorded, as these sites are known mainly after a collapse, making the assessment of sinkhole-related hazard challenging. Furthermore, more than 40 % of the sinkholes of Italy are in seismically hazardous zones; it remains unclear whether seismicity may trigger sinkhole collapse. Here we use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes. Moreover, InSAR shows that continuous aseismic subsidence at rates of up to 7.1 mm yr−1 occurred during 2003–2008, between events of unrest. Earthquakes on the major faults near the sinkhole do not trigger sinkhole activity but low-magnitude earthquakes at 4–12 km depth occurred during sinkhole unrest in 1996 and 2016. We interpret our observations as evidence of seismic creep at depth causing fracturing and ultimately leading to the formation and growth of the Prà di Lama sinkhole.

Highlights

  • Sinkholes are closed depressions with internal drainage typically associated with karst environments, where the exposed soluble rocks are dissolved by circulating groundwater but other types of sinkholes exist

  • We use a multidisciplinary data set of InSAR, surface mapping and historical records of sinkhole activity to show that the Prà di Lama lake is a long-lived sinkhole that was formed in an active fault zone and grew through several events of unrest characterized by episodic subsidence and lake-level changes

  • Induced stress changes could trigger the collapse of unstable cavities as in the case of the two sinkholes that formed near Ein Gedi (Dead Sea) following the Mw 5.2 earthquake on the Dead Sea Transform fault in 2004 (Salamon, 2004)

Read more

Summary

Introduction

Sinkholes are closed depressions with internal drainage typically associated with karst environments, where the exposed soluble rocks are dissolved by circulating groundwater (dissolution sinkholes) but other types of sinkholes exist. Deep sinkholes have been often observed along seismically active faults indicating a causal link between sinkhole formation and active tectonics (Faccenna et al, 1993; Harrison et al, 2002; Closson et al, 2005; Florea, 2005; Del Prete et al, 2010; Parise et al, 2010; Wadas et al, 2017). Whether seismicity along the active faults around Prà di Lama may trigger sinkhole subsidence or collapse is debated. In this paper we combine recent InSAR observations, seismicity and surface mapping, as well as historical records of lake-level changes and ground subsidence at the Prà di Lama from 1828 to understand the mechanisms of sinkhole growth in an active fault system

Geological setting
Historical record
Seismicity
Findings
Discussion and conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.